Freezing Properties of Disaccharide Solutions: Inhibition of Hexagonal Ice Crystal Growth and Formation of Cubic Ice
نویسندگان
چکیده
منابع مشابه
Powder X-ray diffraction observations of ice crystals formed from disaccharide solutions.
Powder X-ray diffraction (PXRD) measurements on rapid freezing samples of disaccharide (trehalose, sucrose, and maltose) solutions indicated that the crystalline phases in the sample were both hexagonal and cubic ice. The cubic ice existed at a higher ratio in the higher disaccharide concentration samples. The temperature ramping experiments revealed that the cubic ice was stable below 233 K, w...
متن کاملStructure of ice crystallized from supercooled water.
The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases....
متن کاملStacking disorder in ice I.
Traditionally, ice I was considered to exist in two well-defined crystalline forms at ambient pressure: stable hexagonal ice (ice Ih) and metastable cubic ice (ice Ic). However, it is becoming increasingly evident that what has been called cubic ice in the past does not have a structure consistent with the cubic crystal system. Instead, it is a stacking-disordered material containing cubic sequ...
متن کاملFormation of hexagonal and cubic ice during low-temperature growth.
From our daily life we are familiar with hexagonal ice, but at very low temperature ice can exist in a different structure--that of cubic ice. Seeking to unravel the enigmatic relationship between these two low-pressure phases, we examined their formation on a Pt(111) substrate at low temperatures with scanning tunneling microscopy and atomic force microscopy. After completion of the one-molecu...
متن کاملDirect calculation of ice homogeneous nucleation rate for a molecular model of water.
Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations h...
متن کامل